Rabu, 21 Oktober 2015

Materi Fisika Kelas X Semester 1

Materi fisika kelas x semester 1


Besaran Dan Satuan

1. Besaran Pokok
Besaran-besaran dalam fisika dapat dikelompokkan menjadi dua macam, yaitu besaran pokok dan besaran turunan. Besaran pokok adalah besaran yang satuannya didefinisikan atau ditetapkan terlebih dahulu, yang  berdiri sendiri, dan tidak tergantung pada besaran lain. Para ahli merumuskan tujuh macam besaran pokok, seperti yang ditunjukkan pada Tabel2. Sistem Satuan
Satuan merupakan salah satu komponen besaran yang menjadi standar dari suatu besaran. Adanya berbagai macam satuan untuk besaran yang sama akan menimbulkan kesulitan. Kalian harus melakukan penyesuaian-penyesuaian tertentu untuk memecahkan persoalan yang ada. Dengan
adanya kesulitan tersebut, para ahli sepakat untuk menggunakan satu sistem satuan, yaitu menggunakan satuan standar Sistem Internasional, disebut Systeme Internationale d’Unites (SI).
Satuan Internasional adalah satuan yang diakui penggunaannya secara internasional serta memiliki standar yang sudah baku. Satuan ini dibuat untuk menghindari kesalahpahaman yang timbul dalam bidang ilmiah karena adanya perbedaan satuan yang digunakan. Pada awalnya, Sistem Internasional disebut sebagai Metre – Kilogram – Second (MKS). Selanjutnya pada Konferensi Berat dan Pengukuran Tahun 1948, tiga satuan yaitu newton (N), joule (J), dan watt (W) ditambahkan ke dalam SI. Akan tetapi, pada tahun 1960, tujuh Satuan Internasional dari besaran pokok telah ditetapkan yaitu meter, kilogram, sekon, ampere, kelvin, mol, dan kandela.
Sistem MKS menggantikan sistem metrik, yaitu suatu sistem satuan desimal yang mengacu pada meter, gram yang didefinisikan sebagai massa satu sentimeter kubik air, dan detik. Sistem itu juga disebut sistem Centimeter – Gram – Second (CGS).
Satuan dibedakan menjadi dua jenis, yaitu satuan tidak baku dan satuan baku. Standar satuan tidak baku tidak sama di setiap tempat, misalnya jengkal dan hasta. Sementara itu, standar satuan baku telah ditetapkan sama di setiap tempat.
1. Satuan Standar Panjang
Satuan besaran panjang berdasarkan SI dinyatakan dalam meter (m). Ketika sistem metrik diperkenalkan, satuan meter diusulkan setara dengan sepersepuluh juta kali seperempat garis bujur bumi yang melalui kota Paris. Tetapi, penyelidikan awal geodesik menunjukkan ketidakpastian standar ini, sehingga batang platinairidium yang asli dibuat dan disimpan di Sevres dekat Paris, Prancis. Jadi, para ahli menilai bahwa meter standar itu kurang teliti karena mudah berubah.
Para ahli menetapkan lagi patokan panjang yang nilainya selalu konstan. Pada tahun 1960 ditetapkan bahwa satu meter adalah panjang yang sama dengan 1.650.763,73 kali panjang gelombang sinar jingga yang dipancarkan oleh atom-atom gas kripton-86 dalam ruang hampa pada suatu loncatan listrik. Definisi baru menyatakan bahwa satuan panjang SI adalah panjang lintasan yang ditempuh cahaya dalam ruang hampa selama selang waktu 299.792.458 1sekon.
Angka yang sangat besar atau sangat kecil oleh ilmuwan digambarkan menggunakan awalan dengan suatu satuan untuk menyingkat perkalian atau pembagian dari suatu satuan.
b. Satuan Standar Massa
Satuan standar untuk massa adalah kilogram (kg). Satu kilogram standar adalah massa sebuah silinder logam yang terbuat dari platina iridium yang disimpan di Sevres, Prancis. Silinder platina iridium memiliki diameter 3,9 cm dan tinggi 3,9 cm. Massa 1 kilogram standar mendekati
massa 1 liter air murni pada suhu 4 oC.
c. Satuan Standar Waktu
Satuan SI waktu adalah sekon (s). Mula-mula ditetapkan bahwa satu sekon sama dengan 1/86.400rata-rata gerak semu matahari mengelilingi Bumi. Dalam pengamatan astronomi, waktu ini ternyata kurang tepat akibat adanya pergeseran, sehingga tidak dapat digunakan sebagai patokan. Selanjutnya, pada tahun 1956 ditetapkan bahwa satu sekon adalah waktu yang dibutuhkan atom cesium-133 untuk bergetar sebanyak 9.192.631.770 kali.
d. Satuan standar arus listrik
Satuan standar arus listrik adalah ampere (A). Satu ampere didefinisikan sebagai arus tetap, yang dipertahankan untuk tetap mengalir pada dua batang penghantar sejajar dengan panjang tak terhingga, dengan luas penampang yang dapat diabaikan dan terpisahkan sejauh satu meter dalam vakum, yang akan menghasilkan gaya antara kedua batang penghantar sebesar 2 × 10–7 Nm–1.
e. Satuan Standar Suhu
Suhu menunjukkan derajat panas suatu benda. Satuan standar suhu adalah kelvin (K), yang didefinisikan sebagai satuan suhu mutlak dalam termodinamika yang besarnya sama dengan 1/273,16dari suhu titik tripel air. Titik tripel menyatakan temperatur dan tekanan saat terdapat
keseimbangan antara uap, cair, dan padat suatu bahan. Titik tripel air adalah 273,16 K dan 611,2 Pa. Jika dibandingkan dengan skala termometer Celsius, dinyatakan sebagai berikut:
T = 273,16o + tc
f. Satuan Standar Intensitas Cahaya
Intensitas cahaya dalam SI mempunyai satuan kandela (cd), yang besarnya sama dengan intensitas sebuah sumber cahaya yang memancarkan radiasi monokromatik dengan frekuensi 540 × 1012 Hz dan memiliki intensitas pancaran 1/683watt per steradian pada arah tertentu.
g. Satuan Standar jumlah Zat
Satuan SI untuk jumlah zat adalah mol. Satu mol setara dengan jumlah zat yang mengandung partikel elementer sebanyak jumlah atom di dalam 1,2 10-2 kg karbon-12. Partikel elementer merupakan unsur fundamental yang membentuk materi di alam semesta. Partikel ini dapat berupa atom, molekul, elektron, dan lain-lain.

GERAK LURUS

Gerak lurus dapat dikelompokkan menjadi gerak lurus beraturan dan gerak lurus berubah beraturan yang dibedakan dengan ada dan tidaknya percepatan.

[sunting]Gerak lurus beraturan

Gerak lurus beraturan (GLB) adalah gerak lurus suatu obyek, dimana dalam gerak ini kecepatannya tetap atau tanpa percepatan, sehingga jarak yang ditempuh dalam gerak lurus beraturan adalah kelajuan kali waktu.
s = v \cdot t \!
dengan arti dan satuan dalam SI:
  • s = jarak tempuh (m)
  • v = kecepatan (m/s)
  • t = waktu (s)

[sunting]Gerak lurus berubah beraturan

Gerak lurus berubah beraturan (GLBB) adalah gerak lurus suatu obyek, di mana kecepatannya berubah terhadap waktu akibat adanya percepatan yang tetap. Akibat adanya percepatan rumus jarak yang ditempuh tidak lagi linier melainkan kuadratik.
v = v_0 + a \cdot t \!. Gerak Semu atau Relatif
Gerak semu adalah gerak yang sifatnya seolah-olah bergerak atau tidak sebenarnya (ilusi). Contoh : - Benda-benda yang ada diluar mobil kita seolah bergerak padahal kendaraanlah yang bergerak. - Bumi berputar pada porosnya terhadap matahari, namun sekonyong-konyong kita melihat matahari bergerak dari timur ke barat.
2. Gerak Ganda Gerak ganda adalah gerak yang terjadi secara bersamaan terhadap benda-benda yang ada di sekitarnya. Contoh : Seorang bocah kecil yang kurus dan dekil melempar puntung rokok dari atas kereta rangkaia listrik saat berjalan di atap krl tersebut. Maka terjadi gerak puntung rokok terhadap tiga (3) benda di sekitarnya, yaitu : - Gerak terhadap kereta krl - Gerak terhadap bocah kecil yang kurus dan dekil - Gerak terhadap tanah / bumi
3. Gerak Lurus Gerak lurus adalah gerak pada suatu benda melalui lintasan garis lurus. Contohnya seperti gerak rotasi bumi, gerak jatuh buah apel, dan lain sebagainya. Gerak lurus dapat kita bagi lagi menjadi beberapa jenis, yaitu : a. Gerak lurus beraturan (GLB) Gerak lurus beraturan adalah gerak suatu benda yang lurus beraturan dengan kecepatan yang tetap dan stabil. Misal : - Kereta melaju dengan kecepatan yang sama di jalur rel yang lurus - Mobil di jalan tol dengan kecepatan tetap stabil di dalam perjalanannya. b. Gerak lurus berubah beraturan (GLBB) Gerak lurus berubah beraturan adalah gerak suatu benda yang tidak beraturan dengan kecepatan yang berubah-ubah dari waktu ke waktu. Misalnya : - Gerak jatuhnya tetesan air hujan dari atap ke lantai - Mobil yang bergerak di jalan lurus mulai dari berhenti
  • a = percepatan (m/s2)
  • t = waktu (s)
  • s = Jarak tempuh/perpindahan (m)
s = v_0 \cdot t +  \frac{1}{2} a \cdot t^2 \!
dengan arti dan satuan dalam SI:
  • v0 = kecepatan mula-mula (m/s)Pengertian Gerak Serta Macam & Jenis Gerak : Semu/Relatif, Ganda dan Lurus - Belajar Online Internet Gratis Ilmu Science Fisika
Tue, 08/08/2006 - 10:43am — godam64 A. Arti / Definsi / Pengertian Gerak
Gerak adalah suatu perubahan tempat kedudukan pada suatu benda dari titik keseimbangan awal. Sebuah benda dikatakan bergerak jika benda itu berpindah kedudukan terhadap benda lainnya baik perubahan kedudukan yang menjauhi maupun yang mendekati.
B. Jenis / Macam-Macam Gerak
1. Gerak Semu atau Relatif Gerak semu adalah gerak yang sifatnya seolah-olah bergerak atau tidak sebenarnya (ilusi). Contoh : - Benda-benda yang ada diluar mobil kita seolah bergerak padahal kendaraanlah yang bergerak. - Bumi berputar pada porosnya terhadap matahari, namun sekonyong-konyong kita melihat matahari bergerak dari timur ke barat.
2. Gerak Ganda Gerak ganda adalah gerak yang terjadi secara bersamaan terhadap benda-benda yang ada di sekitarnya. Contoh : Seorang bocah kecil yang kurus dan dekil melempar puntung rokok dari atas kereta rangkaia listrik saat berjalan di atap krl tersebut. Maka terjadi gerak puntung rokok terhadap tiga (3) benda di sekitarnya, yaitu : - Gerak terhadap kereta krl - Gerak terhadap bocah kecil yang kurus dan dekil - Gerak terhadap tanah / bumi
3. Gerak Lurus Gerak lurus adalah gerak pada suatu benda melalui lintasan garis lurus. Contohnya seperti gerak rotasi bumi, gerak jatuh buah apel, dan lain sebagainya. Gerak lurus dapat kita bagi lagi menjadi beberapa jenis, yaitu : a. Gerak lurus beraturan (GLB) Gerak lurus beraturan adalah gerak suatu benda yang lurus beraturan dengan kecepatan yang tetap dan stabil. Misal : - Kereta melaju dengan kecepatan yang sama di jalur rel yang lurus - Mobil di jalan tol dengan kecepatan tetap stabil di dalam perjalanannya. b. Gerak lurus berubah beraturan (GLBB) Gerak lurus berubah beraturan adalah gerak suatu benda yang tidak beraturan dengan kecepatan yang berubah-ubah dari waktu ke waktu. Misalnya : - Gerak jatuhnya tetesan air hujan dari atap ke lantai - Mobil yang bergerak di jalan lurus mulai dari berhenti
  • a = percepatan (m/s2)
  • t = waktu (s)
  • s = Jarak tempuh/perpindahan (m)

GERAK MELINGKAR


Besaran gerak melingkar

Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah \theta\!\omega\! dan \alpha\! atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan r\!v\! dan a\!.
Besaran gerak lurus dan melingkar
Gerak lurusGerak melingkar
BesaranSatuan (SI)BesaranSatuan (SI)
poisisi r\!msudut \theta\!rad
kecepatan v\!m/skecepatan sudut \omega\!rad/s
percepatan a\!m/s2percepatan sudut \alpha\!rad/s2
--perioda T\!s
--radius R\!m

[sunting]Turunan dan integral

Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.
\int \omega\ dt = \theta \ \ \leftrightarrow\ \ \omega = \frac{d\theta}{dt}
\int \alpha\ dt = \omega \ \ \leftrightarrow\ \ \alpha = \frac{d\omega}{dt}
\int \int \alpha\ dt^2 = \theta \ \ \leftrightarrow\ \ \alpha = \frac{d^2\theta}{dt^2}

[sunting]Hubungan antar besaran sudut dan tangensial

Antara besaran gerak linier dan melingkar terdapat suatu hubungan melalui R\! khusus untuk komponen tangensial, yaitu
\theta = \frac{r_T}{R}\ \ , \ \ \omega = \frac{v_T}{R}\ \ , \ \ \alpha = \frac{a_T}{R}
Perhatikan bahwa di sini digunakan r_T\! yang didefinisikan sebagai jarak yang ditempuh atau tali busur yang telah dilewati dalam suatu selang waktu dan bukan hanya posisi pada suatu saat, yaitu
r_T \approx |\overrightarrow{r}(t+\Delta t)-\overrightarrow{r}(t)|\!
untuk suatu selang waktu kecil atau sudut yang sempit.

[sunting]Jenis gerak melingkar

Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya \omega\!, yaitu:
  • gerak melingkar beraturan, dan
  • gerak melingkar berubah beraturan.

[sunting]Gerak melingkar beraturan

Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut \omega\! tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial v_T\!dengan jari-jari lintasan R\!
\omega = \frac {v_T} R
Arah kecepatan linier v\! dalam GMB selalu menyinggung lintasan, yang berarti arahnya sama dengan arah kecepatan tangensial v_T\!. Tetapnya nilai kecepatan v_T\! akibat konsekuensi dar tetapnya nilai \omega\!. Selain itu terdapat pula percepatan radial a_R\! yang besarnya tetap dengan arah yang berubah. Percepatan ini disebut sebagai percepatan sentripetal, di mana arahnya selalu menunjuk ke pusat lingkaran.
a_R = \frac {v^2} R = \frac {v_T^2} R
Bila T\! adalah waktu yang dibutuhkan untuk menyelesaikan satu putaran penuh dalam lintasan lingkaran \theta = 2\pi R\!, maka dapat pula dituliskan
v_T = \frac {2\pi R} T \!
Kinematika gerak melingkar beraturan adalah
\theta(t) = \theta_0 + \omega\ t
dengan \theta(t)\! adalah sudut yang dilalui pada suatu saat t\!\theta_0\! adalah sudut mula-mula dan \omega\! adalah kecepatan sudut (yang tetap nilainya). E. Gerak melingkar berubah beraturan ===
Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut \alpha\! tetap. Dalam gerak ini terdapat percepatan tangensial a_T\! (yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial v_T\!).
\alpha = \frac {a_T} R
Kinematika GMBB adalah
\omega(t) = \omega_0 + \alpha\ t \!
\theta(t) = \theta_0 + \omega_0\ t  + \frac12 \alpha\ t^2 \!
\omega^2(t) = \omega_0^2 + 2 \alpha\ (\theta(t) - \theta_0) \!
dengan \alpha\! adalah percepatan sudut yang bernilai tetap dan \omega_0\! adalah kecepatan sudut mula-mula.

[sunting]Persamaan parametrik

Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:
  • titik awal gerakan dilakukan (x_0,y_0)\!
  • kecepatan sudut putaran \omega\! (yang berarti suatu GMB)
  • pusat lingkaran (x_c,y_c)\!
untuk kemudian dibuat persamaannya [2].
Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan R\! yang diperoleh melalui:
R = \sqrt{(x_0 - x_c)^2 + (y_0 - y_c)^2} \!
Setelah diperoleh nilai jari-jari lintasan, persamaan dapat segera dituliskan, yaitu
x(t) = x_c + R cos(\omega t + \phi_x) \!
y(t) = y_c + R sin(\omega t + \phi_y) \!
dengan dua konstanta \phi_x \! dan \phi_y \! yang masih harus ditentukan nilainya. Dengan persyaratan sebelumnya, yaitu diketahuinya nilai (x_0,y_0)\!, maka dapat ditentukan nilai \phi_x \! dan \phi_y \!:
\phi_x = \arccos \left( \frac{x_0 - x_c}{R} \right)\!
\phi_y = \arcsin \left( \frac{y_0 - y_c}{R} \right)\!
Perlu diketahui bahwa sebenarnya
\phi_x = \phi_y \!
karena merupakan sudut awal gerak melingkar.

[sunting]Hubungan antar besaran linier dan angular

Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.

[sunting]Kecepatan tangensial dan kecepatan sudut

Kecepatan linier total dapat diperoleh melalui
v  = \sqrt{v_x^2 + v_y^2}
dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka
v_T  = v = \sqrt{v_x^2 + v_y^2}
dengan
v_x  = \dot{x} = \frac{dx}{dt}
v_y  = \dot{y} = \frac{dy}{dt}
diperoleh
v_x  = -\omega R \sin(\omega t + \phi_x) \!
v_y  = \omega R \cos(\omega t + \phi_x) \!
sehingga
v_T  = \sqrt{(-\omega)^2 R^2 \sin^2(\omega t + \phi_x) + \omega^2 R^2 \cos^2(\omega t + \phi_x)}\!
v_T  = \omega R \sqrt{\sin^2(\omega t + \phi_x) + \cos^2(\omega t + \phi_x)}\!
v_T  = \omega R\!

[sunting]Percepatan tangensial dan kecepatan sudut

Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melalui
a  = \sqrt{a_x^2 + a_y^2}
dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka
a_T  = a = \sqrt{a_x^2 + a_y^2}
dengan
a_x  = \ddot{x} = \frac{d^2x}{dt^2}
a_y  = \ddot{y} = \frac{d^2y}{dt^2}
diperoleh
a_x  = -\omega^2 R \cos(\omega t + \phi_x) \!
a_y  = -\omega^2 R \sin(\omega t + \phi_x) \!
sehingga
a_T  = \sqrt{(-\omega)^4 R^2 \cos^2(\omega t + \phi_x) + \omega^4 R^2 \sin^2(\omega t + \phi_x)}\!
a_T  = \omega^2 R \sqrt{\cos^2(\omega t + \phi_x) + \sin^2(\omega t + \phi_x)}\!
a_T  = \omega^2 R\!

[sunting]Kecepatan sudut tidak tetap

Persamaan parametric dapat pula digunakan apabila gerak melingkar merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwa
\omega \rightarrow \omega(t) = \int \alpha dt = \omega_0 + \alpha t \!
dengan \alpha\! percepatan sudut dan \omega_0\! kecepatan sudut mula-mula. Penurunan GMBB ini akan menjadi sedikit lebih rumit dibandingkan pada kasus GMB di atas.
Persamaan parametrik di atas, dapat dituliskan dalam bentuk yang lebih umum, yaitu:
x(t) = x_c + R \cos \theta \!
y(t) = y_c + R \sin \theta \!
di mana \theta = \theta(t) \! adalah sudut yang dilampaui dalam suatu kurun waktu. Seperti telah disebutkan di atas mengenai hubungan antara \theta \!\omega \! dan \alpha \! melalui proses integrasi dan diferensiasi, maka dalam kasus GMBB hubungan-hubungan tersebut mutlak diperlukan.

[sunting]Kecepatan sudut

Dengan menggunakan aturan rantai dalam melakukan diferensiasi posisi dari persamaan parametrik terhadap waktu diperoleh
v_x(t) = - R \sin \theta\ \frac{d\theta}{dt} =  - \omega(t) R \sin \theta \!
v_y(t) = R \cos \theta \ \frac{d\theta}{dt} = \omega(t) R \cos \theta \!
dengan
\frac{d\theta}{dt} = \omega(t) = \omega_0 + \alpha\ t \!
Dapat dibuktikan bahwa
v(t) = v_T(t) = \sqrt{v_x^2(t) + v_y^2(t)} = \omega(t) R \!
sama dengan kasus pada GMB.

[sunting]Percepatan total

Diferensiasi lebih lanjut terhadap waktu pada kecepatan linier dapat memberikan

yang dapat disederhanakan menjadi

Selanjutnya
yang umumnya dituliskan
dengan
yang merupakan percepatan sudut, dan
yang merupakan percepatan sentripetal. Suku sentripetal ini muncul karena benda harus dibelokkan atau kecepatannya harus diubah sehingga bergerak mengikuti lintasan lingkaran.

[sunting]Gerak berubah beraturan

Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.
Gerak berubah beraturan
KecepatanGLBBGMB
Besarberubahtetap
Arahtetapberubah